Step of Proof: comp_nat_ind_tp
9,38
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
comp
nat
ind
tp
:
1.
P
:
{k}
2.
i
:
. (
j
:
. (
j
<
i
)
P
(
j
))
P
(
i
)
3.
i
:
P
(
i
)
latex
by (%S%
\p. let i = var_of_hyp (get_int_arg `hn` p) p in
\p.
let z = get_distinct_var `zz' p in
\p.
Assert
\p.
(mk_all_term z
\p. (mk_
(mk_all_term i
\p. (mk_(mk
(mk_implies_term
\p. (mk_(mk(mk_i
(mk_less_than_term (mvt i) (mvt z))
\p. (mk_(mk(mk
(concl p))))
\p.
p)
latex
\p
1
: .....assertion..... NILNIL
\p1:
zz
,
i
:
. (
i
<
zz
)
P
(
i
)
\p
2
:
\p2:
4.
zz
,
i
:
. (
i
<
zz
)
P
(
i
)
\p2:
P
(
i
)
\p
.
Definitions
origin